Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems

نویسندگان

  • An Wang
  • Yang Cao
  • Quan Shi
چکیده

In this paper, we demonstrate a complete version of the convergence theory of the modulus-based matrix splitting iteration methods for solving a class of implicit complementarity problems proposed by Hong and Li (Numer. Linear Algebra Appl. 23:629-641, 2016). New convergence conditions are presented when the system matrix is a positive-definite matrix and an [Formula: see text]-matrix, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The modulus-based matrix splitting algorithms for a class of weakly nonlinear complementarity problems

In this paper, we study a class of weakly nonlinear complementarity problems arising from the discretization of free boundary problems. By reformulating the complementarity problems as implicit fixed-point equations based on splitting of the system matrices, we propose a class of modulus-based matrix splitting algorithms. We show their convergence by assuming that the system matrix is positive ...

متن کامل

Modulus-based GSTS Iteration Method for Linear Complementarity Problems

In this paper, amodulus-based generalized skew-Hermitian triangular splitting (MGSTS) iteration method is present for solving a class of linear complementarity problems with the system matrix either being an H+-matrix with non-positive off-diagonal entries or a symmetric positive definite matrix. The convergence of the MGSTS iterationmethod is studied in detail. By choosing different parameters...

متن کامل

Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems

Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...

متن کامل

Modulus-based synchronous multisplitting iteration methods for linear complementarity problems

To reduce the communication among processors and improve the computing time for solving linear complementarity problems, we present a two-step modulus-based synchronous multisplitting iteration method and the corresponding symmetric modulus-based multisplitting relaxation methods. The convergence theorems are established when the system matrix is an H+-matrix, which improve the existing converg...

متن کامل

On the modified iterative methods for $M$-matrix linear systems

This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2018  شماره 

صفحات  -

تاریخ انتشار 2018